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SUMMARY 

Three examples will be presented to demonstrate the performance of the scheme described in Part 1 of 
this paper.’ Two are isothermal (T = 0) and two-dimensional, and one of these is steady and the other 
time-dependent. The third example involves buoyancy effects, is time-dependent and three- 
dimensional, and is presented in less detail. The paper concludes with a short discussion and some 
conclusions from both Parts 1 and 2. 
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1. NUMERICAL RESULTS 
1 . 1 .  Lid-driven cavity 

We selected this ‘classic’ example because there appears to be a new ‘standard’, at high 
Re, against which many results will probably be compared for some time to come. In the 
work by Ghia et al.*, a series of detailed fine-mesh results has been presented for Re = 100, 
400, 1000, 3200, 5000, 7500 and 10,000. Herein we will compare against their high Re 
(21000) results, obtained with a very fine, but uniform mesh (129x 129 nodal points €or 
Re 5 3200 and 257 x 257 points for Re L 5000). Since they used a stream function/vorticity 
approach, our primitive variable results are complementary to theirs (they present stream 
function and vorticity contours and we will present pressure contours and vector fields-as 
well as streamlines). 

* This invited paper is an extended, and refereed version of one presented at the Fourth International Symposium 
on Finite Elements in Flow Problems held in Tokyo, Japan, 26-29 July, 1982. 
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Another reason for choosing this example is that we believed that a good mesh design 
would yield similar accuracy using our modified FEM and significantly fewer nodal points. 
We a priori selected a mesh of 50 x 50 elements (2601 node points vs 65,536) and designed it 
to capture the details in the corners and in the boundary layers (for Re 17500; we ‘pushed 
it’ to Re = 10,000). We believed that we could tolerate large elements in the cavity centre 
since the flow is presumably simple to  model away from the walls and corners. As it turned 
out, our mesh is probably very good, but probably not optimal (are they ever?) nor quite fine 
enough. The smallest element size has h =0.005 (the 4 corners); the mesh is graded 
symmetrically and the four largest elements at the centre of the cavity have h = 0.060 and 
the largest aspect ratio is 12-at the centre of and near each wall. The average element size 
is (of course) 0-02 whereas in Reference 2 it is uniform at -0.0039. Since the flow is nearly 
one-dimensional near the walls, we used (35)* to estimate the stability limit; conservatively, 
using u = 1 near the corner at the lid gives At 1-0.004-0.005 for all Re of interest; all 
simulations were done using At=0.005. (Without BTD, the At limits would have been 
-0.002 at Re = 1000 and -0.0002 at Re = 10,000.) The grid Reynolds numbers (at the lid) 
ranged from a low of -2.5 for Re = 1000 (near the corners) to -300 for Re = 10,000 (near 
the centre). The boundary conditions are: 2) = 0 everywhere and u = 0 everywhere except on 
the top lid, where u = 1 ‘almost everywhere’ (u = 0 at the corners and u = 4 at the first node 
in from the corners, to respect the ‘spurious CB constraint’ described by Sani et aL3. 

We present detailed results only for Re = 5000 and 10,000 (for other values of Re, see 
Reference 2). Figures 1 and 2 show the stream function contours for the entire (unit) cavity 
and corner enlargements (0.4 x 0-4) with the velocity field superimposed. Overall, these 
figures compare rather well with those of Ghia et al. except for one region: the lower right 
eddies at Re = 10,000. Our results seem to predict the wrong size and shape of the small 
eddy (the one with clockwise circulation), a point we shall return to  later. 

The isobars for these two cases are shown in Figures 3 and 4, where the reference pressure 
was taken to be zero at the lower left corner and the spurious chequerboard pressure mode 
was filtered via ‘scheme 3’ (element area weighting) described by Sani et aL3 It is noteworthy 
for these high Reynolds numbers that the isobars seem to nearly satisfy aP/dn = 0 at the 
walls, even in the recirculation zones. This is consistent with the Neumann boundary 
conditions associated with (5) ,  derived from (la), for Re >> 1. The highest pressures in the 
upper right corner are not plotted since they would obscure the vector field and are not 
particularly interesting (i.e. concentric circles, more or less). 

The final contours, presented in Figure 5, are those for total pressure, PT= 
P+p(u2+u2)/2, where P is the (static) pressure computed from the NS equations. The 
interesting point to be made here is that, in the region of the main vortex, these contours 
coincide with those of the stream function, consistent with inviscid flow (Euler’s equations), 
for which PT is constant along a streamline (5  la Bernoulli). The trend towards this behaviour 
was already detected by Burggraf4 at Re = 400, and in our results, at Re 2 5000, it even 
tends to  occur in the first lower right eddy (for which the eddy Reynolds number is -400 at 
Re = 10,000). Note that the regions just below the lid and slightly away from the right wall 
are (purposely) devoid of plotted contours, since the total pressure (and VP,)-is quite large 
there; the velocity in this region is also interesting, as we see below. 

Figure 6 shows velocity profiles through the centre of the cavity at Re = 10,000, which 
agree well with those of Ghia et al. and display similar ‘kinks’ in the same regions discussed 
above; one in u(y) near y = 0.95 or so and one in v (x )  at x = 0.95. These are also regions of 

* Equation numbers refer to the equations of Part 1 of this paper.’ 
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1-0.001 r -0.01 

i- 0.00 

Figure 1. Flow field at Re = 5000; solid curves are +>O, dashed are + < O .  Contours (full cavity) are: -0.10, 
-0.09, -0.07, -0.05, -0.03, -0.01, -0.0001 

large vorticity gradients* and the interesting behaviour in this region appears to be related to 
the rapid transition from boundary layer flow to inviscid core flow. We must add, however, 
that this behaviour seems to  occur only in 2D since Koseff et aL5 .do not see it in 3D 
laboratory experiments. Indeed, their measured velocity profiles disagree substantially with 
those in Figure 6; as these authors point out, 3D cavities can differ greatly from their 2D 
counterparts. 

To obtain some more quantitative comparisons with Ghia et al., Tables I and I1 show the 
local extrema in stream function and velocity, respectively, from both simulations, and we 
shall regard their results as ‘truth’. Our mesh is apparently not fine enough to correctly 
capture the total flow (Table I) in the various eddies, e.g. we are consistently low in the 
primary vortex (2-16 per cent), (nearly) consistently high in the two main lower corner 
eddies (10-27 per cent for the bottom left and 1-62 per cent for the bottom right), and 
consistently low (8-20 per cent) in the top left eddy. The velocity extrema look better, 
however; the error in u is 5 2  per cent and that in is <4 per cent, although the locations of 
the extrema are not as good. (Also noteworthy in this Table is that not even the fine grid 
results of Ghia et al. exhibit monotonic behaviour of these extrema.) 

Turning briefly to the cost of these simulations, we first mention that we have only one 
‘clean’ result: the run at Re = 1000 started from rest and achieved ‘steady state’ (which we 
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Figure 2. Same as Figure 1 except Re = 10,000 

avoid defining very carefully) by t = 30; this true time-dependent simulation required -70 s 
of CPU to march 6000 minor time steps and 240 major time steps (average subcycle ratio of 
25). By comparison, Ghia et al. required 90 s (on a 129 X 129 mesh) to achieve the ‘same’ 
steady state (via an efficient multi-grid method) using an AMDAHL 470 V/6 computer, 
reported to five times slower than a CDC-7600 (K. Ghia, personal communication), which 
translates (roughly) to -20 times slower than our CRAY-1, i.e. it would require only -4.5 s 
on the CRAY-1. Thus, we appear to be paying a factor of -15 in CPU cost to  obtain a fully 
time-dependent solution, which may or may not be worth while. (Recall that our method has 
been designed with transient simulations in mind; steady-state results, when they exist, are 
perhaps better regarded as a ‘bonus’.) For Re = lo4, Ghia et al. report (for the 257 x 257 grid) 
upwards of 20 min CPU, i.e. about 1 min on the CRAY-1. Although we do not have very 
good timing data for this case (we did not start from rest and perform the full transient 
simulation), we believe that a similar ratio (10 or so) would again occur if we did start from 
rest. For this extra cost however, we obtain in addition to the full transient, an important 
additional piece of data, not obtainable by steady-state solution techniques: the steady-state 
solution exists, i.e. it is stable. Finally we remark that the timing reported by Ghia et al. did 
not include the cost of finding the optimum set of multi-grid ‘tuning parameters’; presumably 
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Figure 3. Isobars and velocity vectors for Re = 5000; solid curves are P > 0, dashed are P < 0. Contours (full cavity) 
are: -0.06 (0.005) 0.01 

this cost is either negligible or the same parameters can be used for other simulations (or 
both). 

may be 
also in order: 

(i) Even though the corner singularities are analytically describable by assuming Stokes 
flow near the c o r n e r ~ , ~ ’ ~  the realization of this zero-inertia limit does not appear to be 
possible for large Re without extreme mesh refinement in these corners. For example, 
the pressure solution in the top right corner is7 

A few remarks regarding Stokes flow, corner singularities and Moffatt’s 

4 
Re (T* - 4) P(r, 8) = (IT sin 8 + 2 cos 8 ) / r  

where r is the (dimensionless) distance from the corner and 8 is the angle from the top 
lid. In order for this l l r  description to be accurate, we need to be sufficiently close to 
the corner that rRe << 1, which translates to, e.g. r<< for Re = lo4 (vis-A-vis 
Ax = 0.0039 on the best grid of Ghia et al.). We should also remark that Winters and 
Cliffe and, more recently, Hutton’ present a rather strong argument for performing 
detailed grid refinement in the top corners for this problem. Although we probably 
should have heeded this good advice, we took the cheaper route so that we could use 
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- p =  
0.00667 

(ii) 

L P 0 = O  

Figure 4. Same as Figure 3 except Re = 10,000.and contours (full cavity) are: -0.05 (0.00571) 0.03 

the more efficient version of our code which is restricted to logically-regular meshes. 
(Non-logical meshes cause a loss of efficiency since they require extensive use of 
non-vectorizable instructions.) Perhaps we will later investigate the effect of corner 
mesh refinement. We hope that the numerical results (ours, and those of Ghia et al.) 
are still meaningful away from these corners and that the highly local singularity does 
not affect the overall solution too much (but cf. Reference 9). 
The multiple eddies in the lower corners appear to be related to the sequence of 
Stokes flow eddies (initially) studied by Moffat,6 although there appears to be a slight 
paradox: Re must be increased to generate multiple eddies, yet their presence is 
predicted by assuming Re -+ 0. (However, Burggraf4 found good agreement with 
Moffatt’s theory at Re = 400 for the (single) eddy in the lower right corner). 

In summary and conclusion, we offer: 
(i) For the ‘overworked’ and somewhat controversial 2D lid-driven cavity problem, we 

see the interesting result (already noted, in part, by Burggraf4) that nearly all ranges 
of behaviour of the NS equations can be displayed: Stokes flow (very) near the 
corners, fully viscous flow near the walls and in most of the eddies, and nearly inviscid 
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Figui -e 5. Total pressure fields; solid curves are P,>O, dashed are P,<O. Top: Re = 5000; bottom: Re = lo,( 
Contour interval is 0.01 

300. 

flow (with constant vorticity) in the primary eddy. Perhaps this heavily-studied model 
problem is indeed worth while, in spite of the corner singularities. 

(ii) For the most part, our results (on a relatively coarse mesh) compare well with the fine 
mesh results of Ghia et al.-the notable exception being the shape and strength of the 
bottom right eddies at the highest Re  (lo4). 

(iii) Our results demonstrate (nearly) that stable steady-state laminar solutions exist, at 
least up to Re = lo4. (This result does not carry over to 3D, however, since Koseff and 
Street" report a breakdown of steady laminar flow at Re = 6000-8000 in a 3D cavity 
with a 3: 1 aspect ratio.) 
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Figure 6 .  Velocity profiles through the centre of the cavity; Re = 10,000 

Table I. Stream function extrema 

Primary Top Bottom Bottom Bottom Bottom 
Re vortex left left 1 left 2 right 1 right 2 

-0.114 - 2.0 x -1.14 x 1.76 x -1.8 x Present work 

1000 -0.118 - 2.31 x - 1.75 x -9.32X lo-' Ghia et al. 

-0.118 5.86 x 1.20 X -1 .00 x lo-' 3.29 x -2.05 x Present work 
~- 

3200 -0,120 7.28 x 9.78 x -6.33 x lo-' 3.14 x -2.22 x Ghia et al. 

-0.109 1.23 x lo-' 1.49 x -2.85 x lo-' 3.87 x -5.22 x lo-' Present work 

5000 -0.119 1-46 x 1-36 x -7-09 x lo-' 3-08 x lo-' -1-43 x Ghia et al. 

-0.108 1 . 8 4 ~  1.75 x - 2 . 7 4 ~  lo-' 4 . 8 6 ~  - 7 . 4 6 ~  Present work 

7500 -0.120 2.05 x 1.47 x -1.83 x 3 . 2 8 ~  lo-' -3.28 x Ghia et al. 
~ ~ - - 

-0.101 2 . 2 3 ~  1 . 9 3 ~  lo-' - 3 . 0 8 ~  lo-' 5 . 5 4 ~  -2.O2X Present work 

10,000 -0.120 2.42 x 1 5 2  x lo-' -7.76 x 3.42 x -1.31 x Ghia et al. 

1.2. Vortex shedding behind a cylinder 

We next present some results for another classic problem: flow past a circular cylinder. We 
will present some detailed results in the vortex shedding regime at R e  = uoD/v = 50 and 
200, and less detailed results at Re = 100 and 400. Finally, we will show results in a case 
where a steady-state solution is attained (Re  = 25). The computational domain, shown in 
Figure 7, is about 21 units long (length is measured in cylinder diameters) and about 9 units 
high. The general mesh design follows that of Brooks and Hughes," which improved our 
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Table 11. Extrema in velocity 

Present work Ghia et al. 

1000 -0'375 0.160 -0.516 0.906 0.362 0'160 -0.383 0.172 -0.516 0.906 0.371 0.156 

3200 -0.420 0.084 -0.560 0'945 0.415 0.094 -0.419 0.102 -0.541 0.945 0.428 0.094 

5000 -0.426 0.074 -0.563 0.906 0.419 0.074 -0.436 0.070 -0,554 0.953 0.436 0.078 
~~~ ~ ~~~ 

7500 -0.430 0.055 -0.567 0'963 0'424 0.064 -0'436 0.063 -0'552 0.960 0.440 0'070 

10,000 -0.431 0.055 -0.559 0'963 0.423 0.064 -0.427 0.055 -0.543 0.969 0'440 0.063 

earlier mesh'' except that our current mesh is somewhat finer since it was designed for 
Re 5 -400 (based on estimated boundary layer thickness, vortex spacing, etc.). We used 
1760 elements (1852 nodes) with a graded mesh (see Figure 8 for mesh details near the 
cylinder). Denoting r as the radial co-ordinate and 8 as the angular co-ordinate, the 
minimum Ar is -0.027, and Ar gradually grows to -0.3 (attained at -4 diameters behind 
the cylinder on the centreline), which is then constant to the outlet. In the circumferential 
direction, r A 6  is constant at 0.078 over the front half and 0.044 over the rear half (on the 
cylinder surface). The boundary conditions were chosen to approximate tow tank conditions: 
u = uo = 1, v = 0 at the inlet and along the top and bottom walls; natural boundary conditions 
were used at the exit (namely, - P +  Re-' au/ax = 0 and av/ax = 0). The minor time step used 
was usually 0.05 which corresponds to -60 steps per half shedding cycle (recall that the 
horizontal velocity in the wake oscillates at twice the shedding frequency). The At algorithm 
would have used a subcycle ratio of only about 3 (giving 20 major steps per one-half cycle, a 
reasonable number). Thus, we decided not to use the subcycle option at all since the gain in 
cost-effectiveness is very small. 

We present first a series of streamline snapshots for Re=50,  100, 200 and 400 at 
(approximately) the same point in time during vortex shedding in Figure 9; the 'same time' 

r o  

-2 

-4 1 
-4 -2 0 2 4 6 8 10 12 14 16 

X 

Figure 7. Finite element mesh for flow past a cylinder 
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Figure 8. Mesh details near cylinder 

corresponds (approximately) to the first appearance of the attached eddy on the top r t  
portion of the cylinder. The wavelengths for these cases are 6.5, 5.2, 4.4 and 4.4 
respectively, where we also note that, unlike the results presented earlier on a too-coarse 
mesh (at Re = 100; see Reference 13) wherein the vortices tended to cross over the wake 
centreline and even disappear, these results appear to be much more reasonable. (Snapshots 
of relative streamlines, not presented, show that the vortices remain on the same side of the 
centreline as that of their genesis.) We now attribute the earlier failure to the combined 
effects of: (i) the pressure gradient error associated with a coarse mesh of distorted elements 
and (ii) large phase error on the same mesh-both of which are much-reduced in the present 
set of calculations. 

Denoting by T the period for one shedding cycle (during which two vortices are shed-one 
from the top and one from the bottom), Figures 10 and 12 depict a sequence of streamline 
snapshots covering half of a cycle (At = 7/16) for Re = 50 and 200, respectively (also shown 

Figure 9. Streamlines during quasi-steady vortex shedding; contour values are: 0, *0.2, ~t0.4,  *0.6. (a) Re = 50; (b) 
Re = 100; (c) Re = 200; (d) Re = 400 



Figure 10. Streamlines near cylinder; Re =SO.  Contours are: 0, M.01, *042, +045, *0.10. *0.15, M.20; solid 
curves are +>O and dashed curves are +<0. Ar = 7/16 between successive pictures 
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Figure 11. Velocity field near cylinder at t = 0 at Re = 50 (a) and Re = 200(b) 

in Figure 11 are the velocity vectors corresponding to the first of the streamline plots); again 
t = 0 is chosen to be the first clear appearance of the top vortex. The differences between the 
two sets of results are interesting: (i) whereas the new vortex exhibits monotonic growth, and 
finally, detachment at Re = 50, the ‘same’ vortex at Re = 200 seems to grow slightly, then 
shrink in size (perhaps even disappearing then reforming), and finally grows monotonically in 
size and strength before detaching, (ii) the time history plots near the cylinder for this latter 
case (indeed for all Re 2 200) are consistent with these pictures in that multiple frequencies 
are present (two for Re = 200 and 400; many for Re = lOOO), (iii) the ‘formation region’ is 
much ‘tighter’ and closer to the cylinder for the higher Re and the eddy is more vertical than 
horizontal, and (iv) the magnitude of the velocity in this near-wake region is significantly 
higher for Re = 200 than for Re = 50. 

Turning now to a summary of all vortex shedding results, we refer to Tables I11 and IV for 
some quantitative data. The principal observations we make are the following: 

(1) The Strouhal number ( S t  = u,f/D, where f = 1/r is the shedding frequency) appears to 
be somewhat high relative to the available experimental data. 



I I 

I I 

Figure 12. Same as Figure 10 except Re = 200 
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Table 111. Summary of vortex shedding results 

Drag 
coefficient, C,  

Lift 
Wave- Vortex Peak- coefficient 

Period Strouhal length speed to- (Peak-to- Range of Range of Range of 
Re (T) No. ( 1 / ~ )  (A)  ( A / T )  Average Peak peak) UX* us* )Ul,,,+ 

25 - - - - 2.26 0 0 0.59 0 1.31 
50 7.0 0.14 6.5 0.93 1.81 0-01 0.69 0.76-0.87 zt0.44 1.36-1.39 

100 5.6 0.18 5.2 0.93 1.76 0.07 1.48 0.86-0.94 jz0.62 1'44-1.51 
200 4.8 0.21 4.4 0.92 1.76 0.18 2.10 0.93-0.98 +0.77 1.53-1.64 
400 4.6 0.22 4.4 0.96 1.78 0.38 2.82 1.0048-1.0050 +0.85 1.64-1.77 
SO$ 7.1 0.14 6.4 0.90 1.71 0.0005 0.14 0.56-0.69 jz0.27 -1.33 

* u is the velocity on the centreline -8 diameters downstream of the cylinder. 
t Idmax is the maximum speed in the domain; it typically occurs -1 diameter above the cylinder. 
t 9-node element (4-node bilinear pressure) via GFEM, using the (coarser) mesh discribed by Gresho et al.'.13 

(2) The drag coefficients are also higher than the experimental values (experimental values 
for the lift coefficient are difficult to find), e.g. Jordan and Fromrnl4 show values of cD 
of about 2-0, 1.5, 1.3, 1.2 and 1.2 for the 5 values of Re in Table 111. 

(3) The pressure contribution was 70-80 per cent of the total lift and drag, in reasonable 
agreement with the results of Swanson and Spaulding." 

(4) For the most part, the solution at Re = 50 agrees well with that from a higher order 
element using GFEM (3 X 3 quadrature, consistent mass, same BCs), although the lift 
coefficient and the overall 'intensity' of the flow are noticeably larger for the 4-node 
element. 

The calculation at Re = 50 with the 9-node element was performed in order to assess, in 
part, the ostensibly inaccurate results (again) from the 4-node element; partly for cD and 
Strouhal number, but partly for another reason: experimentalists report1c20 the existence of 
two permanently attached (and presumably oscillating and unsymmetric) eddies at this value 
of Re (and, indeed, at any Re<Re, where Re, is variously reported as -90-110). The 
9-node results also clearly 'showed' that vortex shedding occurs (no permanently attached 
eddies) at this low Re, thus bolstering our confidence in the 4-node results while at the same 
time leaving us somehwat puzzled. Why does a pair of eddies remain attached in the physical 
laboratory and not in the computer laboratory? We regret that we do not yet have a good 
answer-only guesses, and these are more or less the obvious ones (mesh too coarse, domain 
too small, poor choice of BCs, etc.). The only investigators we have found who seem to agree 

Table IV. Comparison of calculated and measured Strouhal numbers 

Re Our calculation Berger & Wille" Gerrard" 

From recommended 
Figure 1 Figure 2 equation 

50 0.14 0.12-0.13 0.14 0.13 0.12 
100 0.18 0.16-0.17 0.17 0.15 0.16 
200 0.21 0.18-0.19 0.18-0.20 0.18 0.18 
400 0.22 0.20-0.21 0-20-0.21 0.20 0.20 
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with us are Perry et aL2l who, in spite of the laboratory results referred to above, propose 
(their Figure 2) that a mechanism much like that shown in Figures 10 and 12, 'is valid 
irrespective of the Reynolds number'. Perhaps in the future we (or, we hope, someone else) 
will add a streakline capability and repeat some of these simulations (using a finer mesh and 
a larger computational domain), to see if the Perry et al. model is 'correct' (see their Figure 

To further examine the accuracy (or otherwise) of our model, we doubled the viscosity to 
cause a step reduction in Re from 50 to 25 and continued the integration. The oscillatory 
behaviour decayed slowly and monotonically, reaching a steady state by 50-60 time units 
(t-D/uo).  The good news was that the steady state exhibited a pair of symmetric attached 
eddies, the detailed structure of which agreed very well with the experimental results of 
Coutanceau and Bouard;22 see Table V. The principal conclusion we draw from this 
comparison is that our results are sufficiently accurate, at least for the steady case. If the high 
Re cases, with vortex shedding, are erroneous, it may be that it is only the dynamic case that 
is particularly sensitive to errors in V P  and that these errors may in fact cancel in the steady 
state owing to the symmetry about the centreline. (Recall also that in Reference 13 we 
reported that the 4-node and 9-node results from a steady-state code agreed quite well at 
Re = 100 on a much coarser mesh; the symmetric eddy pair was then -4.5 diameters long). 

9). 

Table V. Comparison of steady state results for Re = 25 

Experiments of Coutanceau 
and Bouard" 

A =0.12* A = 0-Ot Present study 

Length of closed wake measured 
from the rear of cylinder 0.90 1.22 1.15 

Maximum width of the wake 0.73 0.85 0.81 

x-co-ordinate of the maximum 
width of the wake$ 0.63 0.75 0.67 

Separation angle from the 
x-axis 45" 48" 45" 

x-co-ordinate of vortex centre 0.82 0-94 0.88 

Vertical distance between 
vortex centres 0.44 0.51 0.47 

Maximum velocity on the x- 
axis in the closed wake 
(toward cylinder) 0.047 0.057 0.057 

x-co-ordinate of the 
maximum velocity 0.87 1.00 0.99 

* A is the ratio between the cylinder and tank diameters. 
i Results corresponding to A = 0 were obtained by Coutanceau and Bouard via extrapolation. 
$ The origin of coordinate system is at the centre of the cylinder and length is in units of cylinder 
diameter. 
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Additional remarks 

(i) When we changed the inlet BC from u = 1 to one of specified force, f,,(y) (Re = loo), 
the inlet velocity profile was altered and the drag coefficient reduced from 1.76 to 
- 1.37, in much better agreement with experiments. This suggests that our inlet is too 
close to the cylinder to  use tow tank BCs for vortex shedding (recall that the Re = 25 
results are good), and this may explain a large part of the discrepancy between our 
results and those of others. 

(ii) The boundary layer on the upstream portion of the cylinder seems to be adequately 
resolved (Figure 11); this is also true at Re = 400. 

(iii) If, in fact, all of the following quantities: shedding frequency, lift, drag, and velocity in 
the wake are too large, there is probably a common cause. 

Turning briefly to the higher Re results, we first recall that some time histories displayed 
multiple frequencies for Re 2200.  Indeed, an attempt to  simulate Re = 1000 seemed to be 
trying to show multiple and ephemeral small-scale vortices in the immediate vicinity of the 
cylinder-and there was no tendency to form a clear vortex street nor even to attain a 
quasi-steady oscillatory solution. These effects may be related to the basic instability of 
laminar flow at higher Re. For example, BloorZ3 observed what appeared to be a two- 
dimensional transition to turbulence via Tollmein-Schlichting waves for Re 2 400, about 
which she states, ‘Above Re = 400 transition occurs before the separated layer rolls up, the 
vortices once formed being turbulent’, and ‘Turbulence, when it develops in the separated 
layers, is preceded by two-dimensional Tollmein-Schlichting waves which eventually degen- 
erate to turbulence by the action of small-scale three-dimensionalities’. Perhaps our 2D 
difficulties at Re = 1000 are related to these experimental observations. 

While on the subject of laboratory results, let us conclude by noting that the experimental- 
ists also do not yet have all the answers and often disagree with each other; examples: 

(1) T r i t t ~ n ~ ~ , ’ ~  and o t h e r ~ ’ ’ , ~ ~ , ~ ~  seem to believe that there is a discontinuity in the St-Re 
curve at Re -- 100 and an associated change in the physics. G a ~ t e r ~ ~ . ~ ’  disagrees and 
claims that the behaviour is smooth (the ‘Tritton-Gaster controversy’”). 

(2) Related to  this, Gerrard” notes that even Tritton16 and Berger” disagree on the 
direction of the discontinuity as Re is increased; Tritton predicts a sudden decrease in 
St and Berger a sudden increase. 

(3) The origin of the instability leading to the periodic oscillations in the wake at 
Re 2 -40 is (to our knowledge) not yet agreed upon; e.g. T r i t t ~ n ’ ~ . ’ ~  blames it on ‘an 
instability of the wake; the only role of the cylinder is to produce the velocity profile’. 
Gerrard2’ argues, however, that the separation bubble itself becomes unstable and 
forms waves or ‘gathers’ which ultimately become unstable. 

(4) If, during vortex shedding at Re - 100, dye is injected upstream of the cylinder and 
slightly away from the centreline, Zdravkovich’’ claims (and his photos seem to 
support) that the dye may actually end up on the other side of the centreline in the 
downstream wake and vortices. Gerrard,” however, disagrees and claims that the dye 
would end up in the vortices on the same side of the wake. It should be noted, 
however, that Gerrard performed a different experiment-he injected (or generated) 
dye in the near-wake. 

Thus, although the computer laboratory is plagued with issues numerical in nature, the 
physical laboratory seems also to be far from perfect. To some extent, it seems that the more 
we study this problem the more confused we become. 

Finally, we briefly discuss the cost of our simulations, all of which were done in memory on 
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the CRAY-1. Without subcycling, the Re =200 case, at At=0.05, cost 8.2s CPU per 
shedding cycle; a typical run required 1-2 min total CPU. (For Re = 50 and 25, At was 0-025 
and 0.015, respectively, based on a diffusion stability limit). 

1.3. Simulation of a heavy gas release 

This last example concerns the simulation of the dynamics associated with the gravitational 
spread and vapour dispersion of LNG (liquefied natural gas) spills over variable terrain in the 
atmosphere. Since the NG (natural gas) density at its boiling temperature is significantly 
greater than that of the ambient air (by approximately 60 per cent), the use of the 
Boussinesq equations for modelling such flows is probably inappr~priate.'~ We have there- 
fore employed the generalized anelastic formulation described by Chan ef aL3' In addition to 
solving equations similar to (l), we also solved the species conservation equation for NG 
mass fraction (w) .  Herein we are interested in assessing the effects of the various Gauss rules 
on the numerical results and computational costs. 

A graded mesh consisting of 6400 elements (40 X 20 X 8) was used in the simulations, with 
a total of 7749 nodal points and approximately 45,000 equations. The initial condition for 
the simulation was a steady isothermal wind field ( -3  to 4m/s) without NG vapour. 
Constant diffusivities, typical of the planetary boundary layer (0.4 m2/s vertically and 
2.0m2/s horizontally), were used throughout the simulation. The boil-off of LNG was 
simulated as a source area over 12 of the 30 elements comprising the spill pond; see Figure 
13. Over this area, a vertical injection velocity of -O.lm/s, along with a temperature of 
-160°C (NG boiling temperature), and a constant rate of NG mass flux were specified. Away 
from the source area, we used u = 0 and aT/an = awlan = 0 at the ground. The remaining 
boundary conditions employed were: specified u, T, w at the inlet plane, natural boundary 
conditions at the outlet, and symmetry conditions at the top and two lateral surfaces. 

The problem was run with three different Gauss rules: (a) 2-point quadrature for all 
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Figure 13. Horizontal velocities 1 m above the ground; 104s after initiation of LNG spill. The spill pond is centred 
at (0,O) 
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Figure 14. Predicted concentrations 1 m above the ground: - 2-point; -.- mixed; - - - - 1-point 

integrals, (b) mixed quadrature, namely 1-point quadrature for advection and diffusion, but 
2-point quadrature for the others and (c) 1-point quadrature for all terms. The velocity field 
(plus terrain contours) 1 m above the ground at 104 s after initiation of the spill is shown in 
Figure 13; the vector field looks virtually identical for all 3 runs. Figure 14 shows the 
concentration contours on a ‘horizontal’ plane 1 m above the ground and Figure 15 displays 
the corresponding contours on a longitudinal plane through the pond centreline, both at the 
same time (104 s). As seen in these Figures, although the effects of different Gauss rules are 
noticeable, the important characteristics of the cloud (i.e. the gravitational spread in all 
directions and the shift of the cloud centreline away from the mean wind direction, due to 
gravity and topographic effects, both of which have been observed in field experiment) are 
similarly predicted by all three schemes. Furthermore, the agreement between the schemes 
regarding the predicted flammable zone (5 to 15 per cent NG vapour) is also very good. 
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Figure 15. Predicted concentrations on a longitudinal plane: (a) 2-point, (b) mixed, (c) 1-point 
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Further and more detailed results of NG dispersion simulations are presented by Ermak et 
aL31 and Chan et al.30 

The code with 2-point quadrature (which must retrieve the advection and diffusion 
matrices from disc every time step and does not vectorize very well) required approximately 
7 s of CPU and 13 s of 1/0 per time step to simulate 0.4 s of real time. The highly vectorized, 
l-point quadrature code, on the other hand, required only 0.3s of CPU and 1-3s  of I/O. 
The mixed quadrature approach required about 0.3s of CPU and 1.8s of I/O, with the 
additional 1/0 cost spent on retrieving the C matrix. 

Further examples of results from this code are 
(1) Transient lid-driven cavity, 2D and 3D.32 
(2) Time-dependent 3D Benard convection with two different, oscillatory, ‘steady- 

(3) Time-dependent, stably-stratified lid-driven cavity, 2D and 3D.34 
(4) Time-dependent 2D thermal convection of liquid metal (low Pr).35 
(5 )  Comparison with laboratory data (3D) for isothermal and stratified lid-driven 

states’.33 

cavities.36 

2. DISCUSSION 

2.1. Steady-state, stability, subcycling and normal modes 

An interesting side-effect of the velocity adjustment process associated with subcycling is 
worth some discussion. Each time the subcycled velocity is projected back onto the 
divergence-free subspace, the otherwise (nearly) continuous (in time) simulation is slightly 
perturbed. The consequences of this random-like perturbation are usually, but not always, 
innocuous. On occasion, however, the effects are quite noticeable and seem to be related to a 
sort of ‘periodic’ excitation of the system’s ‘normal modes’. This effect, which can probably 
also be regarded as a continuous application of a linear stability ‘analysis’ via small 
perturbations, is interesting but often annoying-especially when the flow is trying to 
approach a steady state. When these situations occur, and a steady-state is sought, we often 
turn off the subcycling option, after which the normal mode oscillations gradually decay. 

For example, the lid-driven cavity solution at Re = 10,000 displayed some relatively large 
oscillations, at a dominant period of -1.4 (with a ‘subharmonic’ at a period of about 39, as 
‘steady-state’ was approached-but the ‘large’ amplitudes occurred only in a small portion of 
the grid, namely in the region of the two lower right corner eddies (those, in fact, whose final 
shape, attained only after -SO time units after subcycling was discontinued, disagreed 
somewhat with that presented by Ghia et al.’). It seems that these eddies are less stable, in 
some sense, and the perturbations caused them to shift back and forth, slightly changing size 
and shape with a period of -1.4. Also, there is no obvious correlation of these periods with 
the time steps employed: the minor At was 0.005 and the major At was -0.13 during these 
‘subcycle jitters’, yet the amplitude and frequencies of the normal mode oscillations were 
quite constant. Finally we note that Koseff and Street” have observed that the transition 
from laminar flow to a semi-turbulent flow, which occurs in the Re range of 6000-8000 in a 
3-D cavity, begins in this same region of the cavity. This might not be coincidental. 

Another example, perhaps more easily explainable, can occur during a simulation involv- 
ing a stably-stratified flow. In this case the normal modes include a wide spectrum of internal 
gravity waves; these are sometimes excited by the velocity adjustment process, but usually 
only to O(E)  and usually only as a quasi-steady state is approached. 

Thus, although subcycling is no panacea it is, on balance, very helpful; it cures more 
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problems (excessive cost) than it causes, even though we must occasionally turn it off to see 
the ‘truth’. It seems to have the potential, perhaps with further development, of becoming 
more useful and robust. 

2.2. 2 0  vs 3 0  solution strategy 

Although we now routinely, and rather confidently, attack new 2D problems with the 
knowledge that we can generate a reasonably accurate and affordable simulation, 3D 
problems are still another matter. The basic difference between the two is that 2D problems 
can (usually) be solved completely in memory on the CRAY-1, whereas (essentially) all 3D 
problems require peripheral storage (on disk) of the factored pressure matrix. Although the 
CRAY-1 is impressively quick in CPU operations, it reads data from disk at a relatively very 
slow rate (-0.5 million words per second). Thus in a 3D simulation wherein the factored A 
matrix may require 1-10 million words (or more, for fine meshes), the CPU ‘sits idle’ for too 
many seconds while this matrix is read into memory-four times per major time step (once 
for a forward reduction and again for a back substitution, first for A and then for P ) ,  in spite 
of the fact that CPU and 1/0 operations are overlapped as much as possible. Although 
subcycling is often especially effective in reducing costs in 3D, we believe that Gaussian 
elimination may need to be replaced if large problems are to be solved routinely. For 
example, Gresho and U p ~ o n ~ ~  reported a cost of -1 hour CPU and -2.5 hours 1/0 to 
simulate 1 hour of real time (-14,000 minor steps and -400 major steps) in a 3D lid-driven 
cavity flow using a coarse mesh ( 1 8 ~ 2 2 x 1 6  elements and -2 million words for the A 
matrix) and that the I/O cost would have been a ridiculous 35 hours without subcycling. In 
contrast, the CPU cost associated with computing A and P is a reasonably small fraction 
(-10-30 per cent) of the total CPU cost, i.e. the actual ‘number crunching’ associated with 
Gaussian elimination is not too expensive. 

Thus, although we feel we can now afford to perform some ‘simple’ (<10,000 elements 
and short time) 3D calculations, it is clear that we are seriously hindered when it comes to 
long-time simultations of difficult problems (i.e. fine mesh), and that the main problem is 
caused by the tremendous I/O associated with Gaussian elimination. 

Current research is accordingly directed toward solving the Poisson equation using 
methods less demanding of storage, i.e. iterative methods. Highest on our list of candidates is 
the conjugate gradient method, in one form or another (e.g. preconditioned; the multigrid 
method may also be viable). We hope to report success in this direction in the not-too- 
distant future, 

3. CONCLUSIONS 

(1) The techniques presented herein have provided a means for obtaining accurate and 
affordable, truly time-dependent solutions to the incompressible Navier-Stokes equa- 
tions (and variants), at least in 2D. (3D solutions are either less accurate or less 
affordable-but still possible.) 

(2) They are also useful for finding steady solutions, and will only do so when the solution 
exists. (Streamline upwinding is a natural and cost-effective adjunct for steady state 
simulations.) 

(3) Balancing tensor diffusivity (BTD) is essential for cost-effective solutions to A D  and/or 
NS when explicit Euler is used and the flow is advection-dominated. 

(4) Subcycling is beneficial when the time step required for stability is much less than that 
required for accuracy. 
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(5) The hour-glass correction for short waves is often very useful and, sometimes, 
necessary. 

(6) One-point quadrature is a cost-effective modification to G E M  when the simplest 
element is used. In 2D, element mass balances are assured and most problems can be 
solved in memory on modern computers such as the CRAY-1. (Mass lumping and 
explicit Euler also contribute to this cost-effectiveness.) In 3D, it may be advisable (in 
general) to use 2-point quadrature on the C-matrix. 

(7) For transient simultations, the loss in accuracy owing to mass lumping is much greater 
than that caused by 1-point quadrature. For steady state simultations, mass lumping is 
not an issue (it is irrelevant). 

(8) Some of the ideas presented herein (BTD, hourglass correction, subcycling) would 
presumably also be useful in some finite difference codes. 

(9) Steady laminar flow in a 2D lid-driven cavity is stable for Re 5 10,000 (the stability 
limit remains to be found). 
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